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We study the long-time relaxation of magnetization in a disordered linear 
chain of Ising spins from an initially aligned state. The coupling constants 
are ferromagnetic and nearest-neighbor only, taking values Jo and J1 with 
probabilities p and 1 - p, respectively. The time evolution of the system is 
governed by the Glauber master equation. It is shown that for large times t, 
the magnetization M(t) varies as [exp(-,~0t)]q~(t), where A0 is a function 
of the stronger bond strength J0 only, and qS(t) decreases slower than an 
exponential. For very long times, we find that In q)(t) varies as - t  l/a. For 
low enough temperatures, there is an intermediate time regime when 
In q~(t) varies as -ta~L The results can be extended to more general proba- 
bility distributions of ferromagnetic coupling constants, assuming that 
M(t) can only increase if any bond in the chain is strengthened. If the 
coupling constants have a continuous distribution in which the probability 
density varies as a power law near some maximum value J0, we find that 
In q~(t) varies as -tl/3(ln t) 2/3 for large times. 
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1. I N T R O D U C T I O N  

Quenched disorder can have impor tan t  effects on the t ime-dependent  proper-  
ties of magnet ic  systems and  on the approach to equi l ibr ium in particular.  

In  this paper, we study how the magnet iza t ion relaxes to equi l ibr ium in a 

simple model  of a disordered magnet.  The model  consists of a l inear chain of 
Ising spins with r a n d o m  exchange interactions evolving in t ime as in the 

Glauber  model, m Glauber  wrote down a master  equat ion to describe the 
t ime evolut ion of an Ising chain and studied the case when all exchange inter- 
actions were equal. He found  that the un i fo rm magnet izat ion decays exponen-  

tially f rom an initially aligned state with a tempera ture-dependent  relaxat ion 
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time. In our case, with random coupling constants, the system has no transla- 
tional invariance, and the uniform magnetization mode is not an eigenmode 
of the time evolution operator. The decay of the magnetization is not exponen- 
tial any longer, and we determine its long-time behavior for various proba- 
bility distributions of the exchange interaction. 

In mathematical terms, the problem reduces to that of finding the spectral 
properties of a tridiagonal matrix with random elements. In that sense, it is 
quite similar to the problem of finding the density of states of a disordered 
harmonic chain (2-7~ or of electrons in a one-dimensional disordered medium.(6~ 
However, there are important differences. For one thing, the matrix in our 
case is nonsymmetric, unlike the Hamiltonian matrix in the vibrational or 
electronic problems. For another, the matrix elements involve two exchange 
couplings at a time, and so are not independent random variables. Also, the 
uniform mode is not an eigenmode of the matrix, as it is in the vibrational 
problem. (7~ 

A concept originally developed for the vibrational and electronic prob- 
lems which proves useful in the magnetic relaxation case as well is the idea of 
fluctuation states. (8,9~ In the two-mass vibrational problem, fluctuation states 
are due to the occurrence of large clusters of the lighter isotope. Such clusters 
have modes with frequencies very close to the maximum possible frequency; 
how close they are depends on how large the cluster is. They contribute to the 
density of states in the tail end of the band. The arguments of Lifshitz applied 
to one dimension give the density of states 

p(E) ~ e x p ( - A l E -  E0]-1/2) (1) 

where E0 is the band edge energy. In the magnetic case, fluctuation states 
arise from configurations in which there are large clusters of strong bonds. 
The larger a cluster of strong bonds, the slower it relaxes, and so at long times, 
the magnetization is dominated by large clusters. Lifshitz's estimate (1) is 
actually a lower bound on p(E). In our problem, we are able to obtain a 
coinciding upper bound and so show that (1) is the right answer, and deter- 
mine the constant A. 

The plan of the paper is as follows: In Section 2, we formulate the prob- 
lem and reduce it to diagonalizing a random matrix. We show how the long- 
time behavior of the magnetization depends on the properties near the band 
edge of a function D(E), which is quite similar to p(E) discussed above. 

In Section 3, we study the case of a two-peaked probability distribution 
of the exchange, with one of the peaks at zero. The chain then splits up into 
noninteracting segments of various lengths, and the magnetization can be 
found by averaging over segments. The results at low temperatures depend 
on the relative magnitudes of ~r and ~:p, which are two correlation lengths in 
the problem. ~:r is the value of the thermal correlation length in an infinite 
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pure  chain, whereas  ~:p is the percolat ion correlat ion length--essent ia l ly  the 
average size of  a segment.  We show that  if  sep >> sty, the magnet iza t ion M ( t )  

behaves as e x p ( - A 0 t  - c t  1/3) at long t imes (t >> ~:p2). If, on the other  hand, 
~CT >> ~:p, there is an interesting crossover  behavior.  For  ~:p~:r << t << ~ r 3 / ( p ,  

we find M ( t )  ~ e x p ( - A o t  - bt lJ2) ,  whereas when t >> ( r 3 / ~ p ,  the magnet iza-  
t ion goes as e x p ( - A o t  - c t l m ) .  We determine Ao, c, and b in terms of  the 
paramete rs  in the model.  

We turn to the case of  a two-peaked  distribution in which neither of  the 
peaks  is at zero in Section 4. We use the node count ing theorem to derive a 
Lifshitz-type lower bound  on the density of  eigenvalues near  the edge. We 
also derive an upper  bound  which coincides asymptot ical ly  with the lower 
bound.  We find that  the qualitative behavior  of  M ( t )  in this case is the same 
as in Section 3. 

In Section 5, we turn to arbi t rary  distr ibutions of  the exchange inter- 
actions. Assuming that  increasing a bond  strength can only slow down the 
relaxation, we use a bond  strengthening (weakening) procedure  together  with 
the results of  Sections 3 and 4 to derive upper  (lower) bounds  on the mag- 
netization, and thus determine its asymptot ic  behavior  for large times. 

2. E Q U I V A L E N C E  OF T H E  P R O B L E M  TO 
D I A G O N A L I Z A T I O N  OF A R A N D O M  M A T R I X  

w e  consider a linear chain of  Ising spins at (i = 1 to N)  described by the 
Hami l ton ian  

N - 1  

Ar = - ~ Ji + 1 , ~ , ~ + 1  (2)  
i = 1  

The coupling constants  J,+1r ( i  = 1 to N - 1) are quenched, independent ,  
identically distr ibuted r a n d o m  variables whose distr ibution function is given 
by 

e ( J )  = p a ( J  - & )  + q a ( J  - Jo) (3) 

Here  q = 1 - p and 0 ~< J1 < Jo- I t  is convenient  to define a pa ramete r  E as 

E = - l n  q (4) 

We will consider more  general distr ibutions than that  given by Eq. (3) in 
Sect ion 5. 

In  the Glauber  model  <~ the t ime evolut ion of  the system is assumed to 
be governed by the master  equat ion 

d ~({cq ... a, ... au} )  = ~ [ W i  +-~({a~ . . . .  or, ... aN} ) - -  W ~ - . ~ ( { a ~  ... ~, ... ~N})] 

(5) 
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where ~ is the probability that the spin configuration is (cq ... ei " ' "  GN} at 
time t, and Wi + and Wi- are spin-flip probabilities per unit time for the spin i. 
The choice (1~ 

Wi • = (1/2r)[1 _+ ~i tanh phi(t)] (6) 

is consistent with the detailed balance condition, and leads to the equation 

(1 + ~-~/~t)(~i(t)) = ( tanh ~h,(t)) (7) 

hi(t) is the instantaneous effective field at site i at time t, given by 

hi(t ) = Ji_l/zcq_l(t) + J,+l/2Cq+l(t) (8) 

and (. . .)  denotes an average over ~. Using the fact that each ~i takes values 
+ 1 only, we can write Eq. (7) as 

(1 + d/dt)Si(t) = Ci-S~_~(t) + Ci+Si+l(t) (9) 

where we have chosen units of time so that r = 1, and defined 

s i ( t )  = (~,~(t)> (lO) 

Ci • = �89 + Ji-z/2) + tanh/~(Ji+112 - Ji-1/2)] (11) 

Equations (8)-(11) hold for the boundary spins i = 1 and N also if we define 
J~12, JN+a/2 -- O. Note that Eqs. (9) form a closed set of equations describing 
the time evolution of Si(t), and we do not need higher order correlation 
functions. This would not be true in higher dimensions. 

Let us assume that at t = 0, all spins are aligned parallel and up. In time, 
they will relax to the equilibrium state with zero magnetization. The average 
magnetization at time t is given by 

N 

M(t) = ( l /N) ~ (Si(t)>~ (12) 
i = l  

where (...)o denotes averaging over the quenched variables {Ji+1/2}. We are 
interested in determining the behavior of M(t) for large times t >> 1. 

Equation (9) may be written as a vector equation determining the time 

evolution of a vector IS(t)) whose ith component is (1/~-N)Si(t). The 
equation is of the form 

d 
IS(t)) = - A l g ( t ) )  (13) 

Here A is an N x N matrix independent of time, and from Eq. (9) it is clear 
that it is nonsymmetric, tridiagonal, and real. Equation (13) has the solution 

IS(t)) = e x p ( - A t ) ] S ( 0 ) )  = ~exp ( -h t ) ] ea .n ) ( ex . r lS (O ) )  (14) 
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where 

IS(0)) = (1/~-N)(1, 1, l .... , l] T (15) 

and A, Ie~.R), and (e~.L[ denote, respectively, the eigenvalues and the right 
and left eigenvectors of A. Taking the configuration average, we get 

fo M(t)  = d~ D(Z) exp(-2t t )  (16) 

where 

D(A) dA = ~ ~a'<~a+aa~ (S(O)lea'u~(ea'zlS(O))~ (17) 

It is clear from Eq. (16) that to determine the behavior of M(t) for large 
times, it is sufficient to determine the behavior of D(~) for A near /~0, the 
lowest allowed eigenvalue. The states that contribute to D(),) in this region 
are precisely the fluctuation states of Lifshitz, and we estimate their con- 
tribution in subsequent sections. 

3. T H E  C A S E  J1 = 0 

We first consider the case when J1 in Eq. (3) is set equal to zero. In this 
case, the chain breaks up into unconnected clusters of spins, and the time 
evolution of each cluster is independent of the others. 

It is easy to see that the probability Pz that an arbitrarily chosen site 
belongs to a cluster containing l spins is given by 

Pl = lp2q z-1 (18) 

and the expected number of clusters of size l is NPJl. 
The average magnetization at time t is given by 

M(t) = ~ P~Mz(t) (19) 
/ = i  

where Mz(t) is the magnetization of a cluster of size l and is determined quite 
easily in terms of the eigenvalues and eigenvectors of a finite 1 x I tridiagonal 
matrix. The eigenvectors are cosines and sines, but the odd modes (sines) do 
not contribute to the sum in Eq. (17). The eigenvalues are found to be 

a~ = 1 - tanh 2/3J 0 cos k~ (20) 

For  the cosine modes, the k~ are the solutions to the equation 

tan k t a n [ } ( / -  1)k] = a (21) 
where 

a = tanh 2/3Jo coth/3Jo - 1 (22) 
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We can think of  each eigenvector of  a finite cluster as defining a localized 
eigenmode for the entire chain, with S~ = 0 for all i outside the cluster. F rom 
the explicit expressions for left and right eigenvectors, it is s traightforward to 
verify that  for  all eigenvalues A 

(S(O)Ie~,.R)(e~.LIS(O)) /> 0 (23) 

I f  [ea.~) has the lowest eigenvalue among the modes localized at a particular 
cluster of  s ize/ ,  we have 

(S(O)]ea.•) (e~.L[S(O)) >1 4rr- 21IN (24) 

The allowed values of  A are bounded from below by Ao, obtained by setting 
k~ = 0 in Eq. (20) ,  i .e . ,  

A /> Ao = 1 - tanh 2[3J o (25) 

This implies that 

D(A) = 0 if A < A0 (26) 

Consider now a value of  a slightly greater than Ao. Then  there exists a critical 
value of  I, say lc(A), such that  for all l < l~(A), no eigenvalue of  an/-c luster  is 
below A. F rom Eq. (21), we see immediately that 

It(A) = 1 + [(2/k) t a n - l ( a  cot k)] (27) 

where Ix] denotes the smallest integer not  smaller than x. Here  k is an 
implicit function of  A, defined by the equation 

A = 1 - tanh 2fiJo cos k (28) 

Now any cluster of  length l i> lo(A) has at least one eigenvalue less than A, 
which, by Eq. (24), contributes at least (2/rr)2l/N to D(A). Defining 

;? I(A) = dA' D(A') (29) 
o 

we get 

, l = l e  

i.e., 

l 
_~ x (expected number  of  clusters of  length l) 

I(A) >i (2/Tr)2qto (~>-1 (30) 

Thus, I(A) is nonzero for A > ho. As h approaches ho from above, lc(h) tends 

to infinity as (~r/~/2)(h - 2,o)-1/2, and (30) becomes 

I(A) >/ (2/~r) 2 exp [ -A(A - Ao) -1/2] (31) 
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where 

A = e ~ r / ~  (32) 

We now derive an upper bound for 1(t). If l > lr at least one eigen- 
value of the/-cluster falls below 1, and if it is large enough, more than One 
falls below 1. From Eq. (23), each additional mode makes a positive con- 
tribution to 1(1). But by completeness, the sum of the contribution of modes 
localized at one/-cluster is at most (l/N). Thus 

I(1) ~< q~o~-i (33) 

The bounds (30) and (33) differ only by a multiplicative factor, and determine 
the asymptotic behavior of I ( t )  [and thus D(t)] for small ( t  - to) fairly 
accurately. In the following, we shall write 

D(t)  ~ A(5) exp - ~- tan-  1 as ~ 1 ~ I o from above (34) 

Here A(I) is some unspecified, slowly varying function of t. Note that some 
smearing out of D(A) is implicit in an analytic form such as that in Eq. (34), 
as the actual function D(1) is a sum of a denumerably infinite number of delta 
functions of varying strengthsY ~ The exact form of A(t) will not matter in 
the following arguments. 

Substituting Eq. (34) in Eq. (16), we can find M(t).  For large t, the 
integral in Eq. (i6) can be evaluated with asymptotic exactness by the method 
of steepest descent, and we get 

l n M ( t )  ~ Max [ -At  + in D(t)] (35) 

It is convenient to separate out the purely exponential part of M(t),  and 
define q~(t) by the equation 

M(t)  --- [ exp( - t0 t ) ]~ ( t  ) (36) 

q~(t) decays less rapidly than exponentially, and we find it below. For  large/3 
and small k, we may write 

t(k) ~ 1 - tanh 2fiJo + k2/2 (37) 

From Eqs. (35)-(37), we find 

In q~(t) ~ Max[ - �89  2 - (2~/k) tan-~(a/k)] (38) 
/c 

If  we define the variables 

we can rewrite this as 

= taa/E, k = k/a (39) 

in q~(t) = - (E/a)ff(t) (40) 
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Fig. 1. 

150 

12D 

F(t )  9.0 

60 

3,0 

J / 

' d - -  0 . 0  20  0 4 .0 60 0 

Graph of F(I) vs. t, showing the crossover from the fz~2 behavior for t << 1 to the 
t 1/3 behavior for i >> 1. 

where i ( i )  is defined by 

i ( i )  = Min [�89 2 + (2//})tan-l(1//})] (41) 
0~<k~< ov 

Figure 1 shows a graph of  if(i) .  For  small i, the extremizing value of /}  in 
Eq. (41) is large, and 

F( i )  ~ Min [�89 2 + 2/k 2] = 2i  1/2 (42) 

For  large i, the extremizing/} is small and 

if( i)  ~ Min [�89 2 + ~r/k] = ~'rr213t lia (43) 
0~</~ co 

The steepest descent approximat ion cannot  be valid for arbitrarily small 
times, as is also evident f rom the fact that  Eq. (42) has an unphysical singu- 
larity at i = 0. The cutoff is given by the requirement  that (e/a)ff( i)  >> 1. 

In order  to summarize our  results in a more t ransparent  manner,  let us 
define thermal and percolat ion correlat ion lengths se~ and ~:p, respectively, by 

~:r = - (In tanh flJo) -~ (44) 

(e = 1/~ (45) 

For  large values of/3, 

~r ,~ 1/a ,,~ exp(2/3Jo)/2 (46) 

We are primarily interested in what  happens when both  sep and ~:r are large. 
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If ~:p >> ~:r, then broken bonds have no very significant effect on the 
relaxation, except at very large times, when M(t) has an additional e x p ( -  t 1/3) 
correction, i.e., 

In M(t) ~ -t/(2~:r 2) -- }rr2/3~p-~/3tl!~ for t >> sep 2 (47) 

If, however, the temperature is so low that ~:r >> ~:p, then for a long time 
qS(t) is of the form exp(-tz12), but ultimately crosses over to exp(-t*/3).  
Explicitly, 

In M(t) ~ --t/(2~:T 2) -- 2~1/2~:~/2t 1/2 for ~r~:P << t << ~: a/~:p (48) 

and 

In M(t) ~ - t/(2~:T 2) -- ~2/~::;2/at~/a for t>> ~:r3/~:F (49) 

The crossover time ~ra/fv may be obtained by equating the two expressions 
for M(t) in (48) and (49). Note that these "correct ions"  to the purely 
exponential relaxation of M(t) are quite important; in fact, for t < ~ra/~v, 
the "correction te rm"  is larger than the linear term (t/2~:r ~) in in M(t). 

This concludes our discussion of the case J~ = 0. 

4. T H E  C A S E  OF N O N Z E R O  J1 

In this section, we argue that even if J1 ~ 0, the function D(•) has the 
same asymptotic form as in Eq. (34) for h close to h o. The case of J1 va 0 only 
changes the value of the constant a appearing in that equation. We determine 
upper and lower bounds for a in this case. 

Let F(/~) be the fractional number of eigenvalues of A that are less than 
A. Thus F(/~) is the integrated spectral density for the disordered chain, with 
bond strengths distributed according to Eq. (3). We show below that 

F(A) >I pq"~ (50) 

and 

F(h) <~ q~L(1 + p~L + p - pq~L) (51) 

where nH and nL are integers which depend on h. For small values of ~, their 
values are given approximately by 

nn ~ [(2/k) tan-l(an/k)] (52) 

and 

nL ~ [(2/k) tan-  l(aL/k)] (53) 

Here aL and an are some constants which depend on flJo and fiJi, and k is 
defined in terms of ,~ by Eq. (28) as before. Explicit expressions for aL and aH 



268 Deepak Dhar and IVlustansir Barma 

are given later. For A -+ A0, both the upper and lower bounds on F(A) have 
the same asymptotic behavior, and suggest that we write 

F(A) ~ A(A) e x p [ -  (2E/k) tan-l(a/k)]  (54) 

where A(A) is some slowly varying function of A, and we have 

aL <. a ~ an (55) 

We will show that a must decrease exponentially fast with fl for large fi, as 
both aL and aH do so. 

Let G(A) be the average value of the matrix element product 
(S(O) IeaR) (caLlS(O)) averaged over eigenmodes with eigenvalues between A 
and A + dA. We expect that G(A) is a slowly varying function of A, varying at 
most like ( A -  A0) -x for some small, positive x. This function can be 
absorbed in A(A), and from Eq. (54) we get 

D(A) ~, A(A) e x p [ -  (2~/k) tan-  1(a/k)] (56) 

This is of the same form as Eq. (34), and the behavior of M(t)  for large t can 
be found exactly as before. Again we find an e x p ( - c t  1/3) correction to the 
exponential decay for M(t)  for very long times. If  we go to low enough 
temperatures, a well-defined window in time develops (what may be called the 
" s h o r t "  long-time regime, corresponding to ~<< 1) when the correction is 
e x p ( -  bt 1/2). 

We now derive the bounds given in Eqs. (50)-(53). 
Let us introduce two dummy spins So and SN+z, which are coupled to $1 

and SN, respectively, with infinitesimal positive bond strengths Jz/2 = 
JN+lJ2 =~ 0. We consider a right eigenvector of A with eigenvalue A and 
components S~(A). We further define 

~:,(A) = S~(A)/S,_I(A) (57) 

~1 = ~ ( 5 8 )  

It follows from Eq. (9) that the ~ satisfy the recurrence relations 

~:~+1 = [(1 - A) - C~-/~]/C~ + (59) 

These recurrence relations can be used to determine successive values of the 
~:r for any given A and a given configuration of bond strengths on the chain. 
The values {~:~} define an eigenmode of the chain if A is such that ~:u + ~ is zero. 
A negative value of ~ implies that S~(A) and S~_z(A) have opposite signs, i.e, 
the eigenmode has a node between the sites i and i - 1. Using the facts that 
C~ ~ /> 0, it can be shown that all the eigenvalues of A are real, and the 
number of negative (~ ,corresponding to any A is equal to the number ofeigen- 
values of A below A. This is the node-counting theorem (~-6~ for our problem. 
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Let  the sites i + 1, i + 2,..., i + n fo rm a cluster of  size n, which means  
tha t  J~ + 1/2 = Ji + ~ + ~/2 = Jz,  and all the intermediate  bonds are of  strength 
J0. Consider  the p ropaga t ion  of  a trial mode  of  eigenvalue A along this 
cluster. The  recurrence relations (59) uniquely determine ~:~ + ~ + 1, given ~:~ + 1 ; 
and we may  write 

{:~ + ~ +z = f,({:, + 1) (60) 

T h e s e f ,  will be called cluster t ransfer  functions. The  p ropaga t ion  of  a mode  
along the chain may  be viewed as successive applications of  these cluster 
t ransfer  functions on the "ini t ial  s ta te"  ~:1. The  value of  ~: after t ransfer  
across r clusters o f  lengths nl ,  n2 ..... n~ is f,~r ""f~2fnl(~). Since the lengths of  
adjacent  clusters are independent  r a n d o m  variables, we may  think of  these 
transfer  functions as evolution opera tors  for a M a r k o v  process. 

F r o m  the linearity of  Eq. (9), it is easy to see that  the funct ionsf~ are of  
the fo rm 

f,(r = U , , -  V , / ( r  W.) (61) 

Here  U,, V,, and W, are functions of  J0, J1, and h. Explicit expressions for 
these may  be writ ten down quite easily. 

As we p ropaga te  a mode  across an n-cluster, the solution may  or may  
not  have any nodes inside the n-cluster, depending on >, and n and the value 
of  ~: just before entering the cluster. ( I f  a node falls between two clusters, we 
shall assign it to the cluster closer to the node. For  example,  if sites i and 
i + 1 belong to different clusters and ~:~ + 1 is negative, the node is assigned to 
the cluster containing site i if  ~+1 < - 1 ;  otherwise it is assigned to the 
cluster containing the site i + 1.) 

I t  is quite clear that  there exists a m i n i m u m  value of  n, say nil(h), such 
that  for  n > nil(h) and for all values of  r just  before entering the cluster, an 
n-cluster has at  least one node for a p ropaga t ing  mode  of  eigenvalue A. This 
is trivially t rue if n > ~r/k. A bet ter  est imate of  nH is obta ined by finding the 
largest  value of  r such tha t  for all n ~< r 

f ~ ( -  1) > - 1 (62) 

Nega t ion  of  this condi t ion would imply that  there exists a mode  with two 
nodes inside the r-cluster. But two independent  eigensolutions of  Eq. (9) with 
the same eigenvalue have interlacing zeros, and hence any other solution of  
eigenvalue A will have at least one node inside the r-cluster (Fig. 2). F r o m  Eq. 
(62), the value of  nH is easily determined.  The  solid curve in Fig. 2 is sym- 
metric  abou t  the middle of  the cluster, and by Eq. (9) it must  have a cosine 
dependence on the site labels i within the n-cluster. Hence  we write 

S,(A)= A c o s k ( j - i  n +  1 ) 2  f o r i +  l <~j<<. i+nH+ 1 

(63) 
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Fig. 2. Graph of a mode with two nodes just outside an n-cluster. We represent the 
strong bonds by double lines joining the corresponding sites. The dashed curve is a mode 
with the same eigenvalue as the mode shown by the solid curve, but for which the value 
of ~: on entering the cluster is not - 1. 

and  

&(a)/&+l(a) /> - 1 ( 6 4 )  

The requi rement  that  Eq. (9) is satisfied at site (i + 1), together  with (64) 
with the inequali ty sign replaced by equality, gives us the value of  nil. We 
find that  nn = [l] -- 1, where 1 is the smallest posit ive solution of  the 
equat ion 

{1 - h + �89 fi(Jo + -/2) - tanh  fl(Jo - J~)]} c o s [ � 8 9  1)k] 

= �89 P(Jo + J1) + tanh fl(Jo - Jz)] c o s [ � 8 9  3)k] (65) 

For  small k, this equat ion simplifies to 

k t a n [ � 8 9  1)k] ~ an (66) 

where 

an = 2[tanh 2fiJo - tanh/~(Jo - J 1 ) ]  [tanh p(Jo + J1) + tanh fi(Jo - J 1 ) ] - ~  
(67a) 

2 exp ( -2 f i J0  + 2fiJz) for large p (67b) 

F r o m  Eq. (66) and the fact that  nn = [l] - 1 we get Eq. (52). N o w  the num- 
ber of  nodes in a mode  corresponding to eigenvalue ~ is certainly greater  than 
the number  of  clusters o f  size greater  than nil. This gives (50). 

The  upper  bound  to F(,~) is established similarly. We define nL(h) as the 
largest integer satisfying the following condit ions:  

(i) For  all n ~< nL(a) and for  all ~ t> 1 

f , ( s  r t> 1 (68) 

(ii) The  corresponding solution has no nodes inside the n-cluster. 
Consider  a sequence of  clusters o f  lengths n~, n2 ..... the length of  each 

cluster in this sequence being less than or equal to nL. I f  the value of  ~: just 
before entering this sequence of  clusters is greater  than one, it would stay 
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greater than one after transfer across the first, second,..., clusters, according 
to (68). Hence this mode will have no modes as it propagates along this 
sequence of clusters. Again, by the interlacing property of zeros of modes 
with equal eigenvalues, any other mode of eigenvalue a propagating along 
this sequence of clusters can have at most one node within this sequence. 

If nL is large, there are very long sequences of the above type in a typical 
configuration of the disordered chain. These are interrupted by a few clusters 
or groups of clusters of sizes greater than nL. Any of these n-clusters (n > nL) 
can have at most n nodes. Let Nfs be the expected number of sequences of 
short clusters which are separated from each other by long clusters of sizes 
greater than no. We get an upper bound to the number of nodes correspond- 
ing to eigenvalue a in terms offs  as 

F(A)~< [~=~@+I P,I + f i  (69) 

Working outf~ in terms of p, q, and nL, we get 

F(3,) ~< q"L(1 + nLp + p - pq~L) 

An explicit expression for nL as a function of A is obtained by solving (68) 
with the inequalities replaced by equalities. The resulting equations are similar 
to (63) and (64), with the - 1 in (64) replaced by + 1. We find that nL = [/], 
where l is determined by the equation 

{2(1 - •) - [tanh fi(Jo + J1) - tanh fi(Jo - J1)]} cos[ �89 1)k] 

= [tanh/3(J0 + J1) + tanh/3(J0 - J,)] cos[ �89 3)k] (70) 

For small k, this equation may be simplified to 

k tan[ �89  1)k] = aL (71) 

where 

a~ = 2[tanh 2/~Jo - tanh/3(J0 + -/1)] [tanh/3(J0 + J1) + tanh/3(Jo - Yz)]-i 
(72a) 

2 exp(-2/3Jo - 2/3J1) for large [3 (72b) 

Equation (53) follows from Eq. (71) directly by requiring that nL -= [/J. 
This completes our derivation of lower and upper bounds for F(A). 

Notice that for Yz = 0 we have aL = an = a. Also, note that both aL and an 
decrease exponentially with/3 for large/3. 

It is possible to obtain better bounds on a by considering groups of 
clusters instead of single clusters treated above. For example, consider two 
adjacent clusters of sizes nz and n2. Then it is easy to determine values of nl 
and n2 such that a propagating mode of eigenvalue A has at least one node 
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inside each double cluster (nl, n2). Counting the number of such double 
clusters in a long chain gives us a better estimate of F(A) than (50). Similarly, 
one can identify pairs (nl, n2) such that an infinite chain obtained by repeating 
the double cluster (nl, n2) has its lowest eigenvalue greater than A. This will 
include all pairs with n~ ~< nL and n2 ~< nL and some more. Then, as argued 
earlier, an uninterrupted long sequence of such double clusters will have at 
most one node. This can be used to get an improved upper bound on F(A). 
The procedure may be generalized to triple clusters, etc. We do not derive 
these bounds as the calculation is tedious, but only remark that the resulting 
upper and lower bounds would be very close to each other. The most impor- 
tant configurations in these calculations are those in which a large cluster of 
strong bonds lies between two moderately large clusters of weak bonds. 

5. OTHER PROBABIL ITY  D I S T R I B U T I O N S  
A N D  THE F E R R O M A G N E T I C  I N E Q U A L I T Y  

In order to study more general distributions of bond strengths, we shall 
assume without proof  the following generalized ferromagnetic inequality. 

C o n j e c t u r e .  Consider a ferromagnetic kinetic Ising model in any 
dimension, specified by the Hamiltonian H = - ~ , j  ar~je~% -, with J~j >i 0. 
The time evolution is governed by the Glauber master equation. The system 
need not be translationally invariant, and the number of spins may be finite 
or infinite. At time t = 0, suppose that all spins are aligned parallel and up. 
Then for all t /> 0 and all sites i, j, and k, St(t) is a monotonic, nondecreasing 
function of Jj~. 

This is a generalization of the well-known GKS (11~ inequalities to non- 
equilibrium situations. The conjecture is very plausible, and we would expect 
it to hold even if some (ferromagnetic) many-spin coupling terms are included 
in the Hamiltonian. A proof  of the inequality in its full generality would be 
very desirable. We know of  no counterexamples to the conjecture, but have 
been unable to devise a proof, even for our comparatively simple case of a 
one-dimensional chain with nearest-neighbor interactions. Some preliminary 
results which support the conjecture for the linear chain are given in the 
appendix. 

Armed with the inequality, we can attack the problem of a general 
distribution of bond strengths. 

Let Jo be the maximum allowed value of d for some arbitrary ferro- 
magnetic distribution P ( J )  of bond strengths. Our first result for the average 
magnetization M ( t )  is the following: 

Lim{[ln M(t)] / t}  = - ( 1  - tanh 213Jo) = - ~o (73) 
t--+m 



Effect of Disorder on Relaxation in the One-Dimensional  Glauber Model  273 

This result shows that at large times the behavior of P ( J )  for small J is 
irrelevant, and only the largest allowed bond strength is important. 

This is proved quite easily as follows. Let us increase the strength of each 
bond in the chain to Jo, in which case the relaxation is purely exponential. By 
the ferromagnetic inequality, this can only increase the average magnetization 
M(t ) ,  and so we have 

M ( t )  <<, e x p [ -  t(1 - tanh 2Mo)] (74) 

We can also establish a similar lower bound. Choose any value of a bond 
strength J* with 0 <~ J* ~< Jo. For any configuration of bonds {J~+1/2} we 
construct a new chain C' whose bond strengths are given by 

Ji'+l/2 = 0 if J~+l/2 < J* (75a) 

Jr/ '+ 1/2 = J*  if J, + 112 /> J* (75b) 

M'( t ) ,  the magnetization of C', decays faster than M ( t ) ,  and so 

Lim[t -1 In M(t)]  >/ Lim[t -1 in M'( t)]  (76) 
t ~ c o  t--+ oo 

But from Section 3, the right-hand side is equal to - (1 - tanh 2~J*), and 
this holds for all choices of J*. Choosing J* arbitrarily close to J0, we 
conclude that 

Lim[t-1 in M(t)]  >/ - (1 - tanh 2/3Jo) (77) 
t ~ o O  

The relations (74) and (77) imply Eq. (73). This determines the leading 
behavior of M ( t )  for large t. 

We can also determine the asymptotic behavior of ~(t). We have seen 
that only the structure of P ( J )  for J close to J0 is important for the long-time 
behavior of M(t ) .  Suppose that for J near Jo, 

P ( J )  "~ (Jo - j ) , - i  (78) 

where/ ,  > 0. We define p ' ( J )  by 

1 - p ' ( J )  =- dJ'  P ( J ' )  (79a) 

K(Jo - J)~ (79b) 

for small (Jo - J)- Here K is some positive constant, p ' (J*)  is just the proba- 
bility of broken bonds in the chain C'.  From Section 3, the magnetization of 
C' for large times t is given by 

In M ' ( t )  ~ - (1 - tanh 2/3J*)t - c{ln[1 - p ' ( J*) ] -  i}2/3t 1/a (80) 
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We treat J*  as a variational parameter, and choose its value such that M'( t )  
in Eq. (80) is as large as possible. This gives us the best lower bound to M(t) .  
A simple calculation shows that for large t, the optimal choice of J*  is 

J*(t)  ,,~ Jo - ~1t-2/3 (81) 

Substituting Eqs. (79b) and (81) in Eq. (80), we get 

in M ( t )  >1 - h 0 t  - ~l'tl/3(ln 0 2/3 (82) 

Here al and al '  are some constants which depend on K and/z. 
We can similarly derive a better upper bound on M ( t )  than in Eq. (74). 

Consider a chain C" whose bond strengths (J~'+ 1/2} are given by 

J~"+ 1/2 = J*  if J~ + 1/2 ~< J*  (83a) 

Ji"+l/2 = J0 if J~+1/2 > J*  (83b) 

The ferromagnetic inequality then implies 

M ( t )  <~ M"( t )  (84) 

where M"( t )  is the magnetization of C". The behavior of M"( t )  for large 
times t is known from Section 4 for any choice of  J*. It  is given by 

in M"( t )  ~ - hot - c { -  ln[1 - p'(J*)]}2/3t 1/3 (85) 

We would like to choose J*  to make M"( t )  as small as possible. This occurs 
whenp ' ( J* )  is as large as possible. However, if J*  is very close to Jo, Eq. (85) 
becomes invalid because of the constraint t >> E/a 3. We adopt the conservative 
estimate aL for a. Note that aL is approximately linear in (Jo - J*) for small 
(Jo - J*)  [Eq. (72)]. Taking the largest J*  consistent with t >> ~/a 3, we get 

which implies 

Jo - J*  ~ a2t-1/3 (86) 

In M ( t )  <<, - Aot - ~2'tl/3(ln t) 2/3 (87) 

where ~2 and ~2' are some constants. 
Both (82) and (87) have the same asymptotic behavior, and so we con- 

clude that for large times t 

In M ( t )  ~ - t(1 - tanh 2/3,/o) - ctl/3(ln t) 213 (88) 

The behavior of the density of states F(A) for A near ho can be obtained by 
taking a Laplace transform of the above equation. 

I f P ( J )  dies off faster than a power of(Jo - J )  near J = Jo, the behavior 
of  the magnetization is somewhat different. Consider, for instance, P ( J )  such 
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that 

~ +~ P ( J ' )  ~ e x p [ - K ( J o  - j ) -b ]  (89) dJ' 

where K and b are positive constants. Then for large times, O(t) decreases as 
e x p ( -  t v) with 

u = (1 + 2b)/(3 + 2b) (90) 

Other probability distributions can be treated similarly. 

A P P E N D I X  

In this appendix, we collect some of the evidence in favor of the con- 
jectured ferromagnetic inequality of Section 5. 

We first show that the S~(t) are positive, monotonically decreasing func- 
tions of time. Define S~(t) = S~(t)e t. Then it follows from Eq. (9) that 

d S,(t) = C,+S,+I(t) + C , -S ,_ I ( t )  (A1) 
dt 

Since S( t  = 0) = 1 for all i and C~ ~ are all positive for nonnegative J,+t/2, 
it follows that 

d S,(t) >/ 0 (A2) 
dt 

This, in particular, implies that all S,(t) are positive and 

S,(t) >>. e x p ( - t )  (A3) 

Now, we show that dS~/dt is nonpositive. Assume the contrary. Since at 
t = O, dS~/dt is negative for all i, there must exist an earliest time to and some 
site j such that d S / d t  changes sign at t = to and the S~(t) are monotonically 
decreasing for all i up to time t = to. Then from Eq. (9) 

Sj(to) = C~+ Sj+l(to) + Cj-Sj_~(to) (A4) 

But direct integration of Eq. (9) gives 

S/ to)  = e -t  + e -t dt' ec[Cj+Sj+~(t') + G - S j - I ( t ' ) ]  (A5) 

But by assumption all S~(t) are monotonically decreasing up to time to, and 
hence for all t '  < to 

Sj ,~( t ' )  >1 Sj+z(to) (A6) 
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Combining this with Eq. (A5), we get 

S,(to) >/ e-to + (1 - e-eo)[Cj+Sj+l(to) + G-Sj_l( t0)]  (A7) 

But the right-hand side of the above inequality is strictly greater than 
[Cj+Sj+z(t0) + Q-Sj_~(to)]. This contradicts Eq. (A4). Hence no such time 
to can be found, and the St(t) are monotonically decreasing functions of time 
for all times. Notice that this implies that for all times t 

S,(t) >1 C,+&+~(t) + C~-S~_I(t) (A8) 

Consider a chain C with bond strengths {J~ + ~/2}. We choose some bond 
strength Jj+li~ and increase it by a very small amount 8Jj+z/2, keeping all 
other bond strengths unchanged. Let the new single spin expectation values 
be &(t) + 8&(t). The ferromagnetic inequality will be proved if we can show 
that a&(t) is nonnegative for all i and all times t. To lowest order in 8Jj+z/2, 
the 3&(t) satisfy the equations 

(1 + d/dt) 3S,(t) = C~ + 8&+~(t) + C,- a&_l(t),  i ~ j o r j +  1 
(A9) 

aSk(to) = fo t~ 

This implies that aSk(to) is strictly greater than zero, and contradicts our 
assumption of aSk(to) being equal to zero. Hence we conclude that if the 
ferromagnetic inequality is violated, it must be violated at the sitesj o r j  + 1 
first, and only then can the affliction spread to more distant spins. The proof  

dr' exp(t'  - to)[Ck + 3S~+,(t') + C~- 8Sk_,(t')] 

(A11) 

For i = j or j + 1, the equations are 

( l + ~ / d )  8S,(t)= G + 8&+l(t) + C~- 8&_l(t) 

aj [[  ac,+ a<-  s, + ,+,(,)+ 

(A10) 

From the initial conditions, 8&(t = 0) are zero for all i. It is easy to show 
that for very short times, 8Sj+I and 8Sj are positive; and hence from Eq. 
(A9), all 8& are positive. Hence the ferromagnetic inequality holds for 
sufficiently short times. 

Let us assume that it is violated for the first time at t = to for spin at 
some site k. Then 3S~(to) is zero at t = to and it crosses over to negative 
values for t > to. I f k  # j o r j  + 1, we have the integral representation of aSh 
[from Eq. (A9)] 
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of the inequality would be complete if we could show that 8Sj(t) and 8Sj + l(t) 
are never negative. Unfortunately, this last step is nontrivial due to the 
presence of the inhomogeneous term in Eq. (A10). It is easy to see that 
~Cj-/OJj+112 and 0C++1/~Jj+1/2 are negative, and hence the sign of the 
inhomogeneous term in Eq. (AI0) is indefinite. The sign depends on the 
relative magnitudes of Sj_ ~ and Sj+ 1 (say in the equation corresponding to 
8Sj), which in turn depend on magnitudes of couplings to other spins, etc. 

However, we note that in the limit of very large temperatures/~ << 1, the 
hyperbolic tangents in C~ • can be replaced by their arguments. In that case 
OCz~/~Jj+ll2 >>, 0 (i = j , j  + 1), and the inhomogeneous term is always 
positive. 

We have thus shown that in the case of a linear chain, the ferromagnetic 
inequality holds for very large temperatures at all times, and for all tempera- 
tures for very short times. For more general interactions {J~j}, the equations 
of evolution of &(t)  involve higher order correlation functions, and the proof 
is a much harder proposition. 

N O T E  A D D E D  IN P R O O F  

Although we have explicitly considered only ferromagnetic distributions 
in this paper, our results also hold for bounded distributions with mixed 
ferromagnetic and antiferromagnetic bonds. However, the times at which the 
results are valid are larger than those considered in Refs. 12 and 13. 
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